(12) United States Patent Petruzzi et al. ## (54) REVERSE POLARITY PROTECTION FOR N-SUBSTRATE HIGH-SIDE SWITCHES (71) Applicant: Infineon Technologies AG, Neubiberg (DE) Inventors: Luca Petruzzi, Goedersdorf (AT); (72) > Bernhard Auer, Millstatt (AT); Paolo Del Croce, Villach (AT); Markus Ladurner, Villach (AT) Assignee: Infineon Technologies AG, Neubiberg (DE) (*) Subject to any disclaimer, the term of this Notice: patent is extended or adjusted under 35 U.S.C. 154(b) by 406 days. Appl. No.: 13/631,924 Filed: Sep. 29, 2012 (22) #### (65)**Prior Publication Data** US 2014/0091384 A1 Apr. 3, 2014 (51) Int. Cl. H01L 29/78 (2006.01)(2006.01)H01L 27/092 H01L 27/02 (2006.01)H03K 17/0814 (2006.01)(2006.01) H01L 29/423 (52) U.S. Cl. CPC H01L 27/0922 (2013.01); H01L 27/0248 (2013.01); H01L 29/42368 (2013.01); H01L 29/7813 (2013.01); H01L 2924/0002 (2013.01); H03K 17/08142 (2013.01) # substrate, V_s=12V substrate, Ve=12V substrate, V_e=12V OUT, nòde C switch SW_c GND, ov GND, 0V GND, 0V ### US 9,245,888 B2 (10) **Patent No.:** (45) Date of Patent: Jan. 26, 2016 #### Field of Classification Search (58) None See application file for complete search history. #### **References Cited** (56) ## U.S. PATENT DOCUMENTS | 4,992,683 A * 5,539,610 A * 5,629,542 A * 2004/0228053 A1* 2006/0126245 A1 * 4.1* | 5/1997
11/2004
6/2006 | Robin, Jr. 327/432 Williams et al. 361/246 Sakamoto et al. 257/328 Thiery et al. 361/84 Grose et al. 361/84 Pactorine et al. 307/130 | |---|--------------------------------------|--| | 2008/0224547 A1*
2009/0146628 A1
2011/0102956 A1*
2012/0169116 A1*
2012/0212870 A1*
2013/0027114 A1* | 6/2009
5/2011
7/2012
8/2012 | Pastorina et al. 307/130 Nakahara 361/59 Graf 307/10.7 Necco 361/86 Petruzzi et al. 327/437 | ## * cited by examiner Primary Examiner — Jesse Y Miyoshi Assistant Examiner — Abul Kalam (74) Attorney, Agent, or Firm — Slater & Matsil, L.L.P. #### (57)ABSTRACT A semiconductor device is disclosed. In accordance with a first aspect of the present invention the device includes a semiconductor chip having a substrate, a first supply terminal electrically coupled to the substrate to provide a first supply potential (V_s) and a load current to the substrate, and a second supply terminal operably provided with a second supply potential. A first vertical transistor is integrated in the semiconductor chip and electrically coupled between the supply terminal and an output terminal. The first vertical transistor is configured to provide a current path for the load current to the output terminal in accordance with a control signal, which is provided to a gate electrode of the first vertical transistor. ## 14 Claims, 7 Drawing Sheets Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9A Fig. 9B # REVERSE POLARITY PROTECTION FOR N-SUBSTRATE HIGH-SIDE SWITCHES ## TECHNICAL FIELD The present description relates to circuits providing a reverse polarity protection for semiconductor switches, particularly for a semiconductor device including a plurality of DMOS high side switches integrated in an n-doped substrate. ## **BACKGROUND** Currently smart power semiconductor switches are used in a broad variety of applications. Not only in automotive applications smart semiconductor switches are increasingly used 15 to replace electro-mechanical relays. Particularly in battery powered systems (e.g., the electronic equipment of a car) a sufficient reverse polarity protection is a requirement. In a typical automotive application the nominal supply voltage is +12 V. A robust electronic device is usually required to with- 20 stand a supply voltage up to -16 V (reverse voltage) for at least two minutes. A multi-channel switching device usually includes one power semiconductor switch (usually a MOSFET) per output channel wherein an electric load is connected to each output 25 channel. Thus each electric load may be switched on and off using the respective semiconductor switch. Assuming an onresistance of $100 \,\mathrm{m}\Omega$ and a nominal load current of 1 A results in a power loss of 100 mW for each active output channel. Each power semiconductor switch have usually a reverse 30 diode coupled in parallel to the load current path of the semiconductor switch (e.g., the drain-source path in case of a MOSFET). During normal operation this reverse diode is reverse biased and in a blocking state. However, when a negative supply voltage is applied, the reverse diode becomes 35 forward biased and load current may be directed form ground through the load and the reverse diode to the negative supply potential. Assuming a diode forward voltage of at least 0.7 V the resulting power loss in the reverse diode (and thus in the seven times more as during normal operation. It goes without saying that such a situation may be hazardous for the switching device and appropriate reverse polarity protection circuitry is required. Known circuitry providing reverse polarity protection to 45 smart semiconductor switches is comparably complex and requires significant chip space. Thus there is a need for a smart semiconductor switch including an efficient (as far as circuit complexity and chip space requirement are concerned) reverse polarity protection. ## SUMMARY OF THE INVENTION A semiconductor device is disclosed. In accordance with a first aspect of the present invention the device includes a 55 semiconductor chip having a substrate, a first supply terminal electrically coupled to the substrate to provide a first supply potential (V_s) and a load current to the substrate, and a second supply terminal operably provided with a second supply potential. A first vertical transistor is integrated in the semi- 60 conductor chip and electrically coupled between the supply terminal and an output terminal. The first vertical transistor is configured to provide a current path for the load current to the output terminal in accordance with a control signal, which is provided to a gate electrode of the first vertical transistor. Furthermore, a control circuitry is integrated in the semiconductor chip and coupled to the first vertical transistor. The 2 control circuitry is configured to generate the control signal to switch the first vertical transistor on and off. The control circuitry comprises a reverse polarity protection circuit. The reverse polarity protection circuit includes a first MOS transistor coupled in series with a first diode, wherein the MOS transistor and the diode are coupled between the first and the second supply terminals. The reverse polarity protection circuit further includes a first switching circuit that is coupled to the first MOS transistor, electrically connected between the first and the second supply terminals, and configured to activate the MOS transistor when the second supply potential exceeds the first supply potential by more than a given threshold. ## BRIEF DESCRIPTION OF THE DRAWINGS The invention can be better understood with reference to the following drawings and descriptions. The components in the figures are not necessarily to scale, instead emphasis is placed upon illustrating the principles of the invention. Moreover, in the figures, like reference numerals designate corresponding parts. In the drawings: FIG. 1 illustrates an exemplary switching device with multiple output channels, each channel including one high-side n-channel MOS transistor (exemplary voltage levels are specified for normal operation); FIG. 2 illustrates the same circuit as FIG. 1 (exemplary voltage levels are specified for reverse polarity operation); FIG. 3 illustrates a switching device including one exemplary high-side n-channel MOS transistor and a reverse polarity protection circuit in accordance with one example of the invention (exemplary voltage levels are specified for normal operation during active clamping); FIG. 4 illustrates the same circuit as FIG. 3 (exemplary voltage levels are specified for reverse polarity operation); FIG. 5 is a cross sectional view through a semiconductor body in which a DMOS power transistor and a CMOS gate is integrated; FIG. 6 illustrates one detail of the circuit of FIG. 3 includswitching device) is 700 mW per output channel, at least 40 ing a p-channel MOS transistor (exemplary voltage levels are specified for normal operation); > FIG. 7 illustrates the same detail as FIG. 5 (exemplary voltage levels are specified for reverse polarity operation); FIG. 8 illustrates the implementation of the p-channel MOS transistor used in the example of FIG. 5 by means of a cross-sectional view of a semiconductor body, the n-doped body zone of the transistor being isolated from the n-doped substrate by a p-doped isolation zone; and FIGS. 9a and 9b, collectively FIG. 9, include a circuit 50 configured to apply a specific potential to the p-doped isolation zone of the transistor of FIG. 8. ## DETAILED DESCRIPTION OF ILLUSTRATIVE **EMBODIMENTS** FIG. 1 illustrates an exemplary multi-channel switching device that includes a plurality of output channels. Each channel includes one high-side semiconductor switch. The examples presented herein are related to n-channel MOS transistors that are used as high-side power semiconductor switches. In particular, vertical power MOS transistors (e.g., DMOS transistors with or without a trench-gate) are considered. In FIG. 1 includes labels indicating the voltage levels for different circuit nodes in case of normal operation (positive supply voltage V_S =12 V, ground potential V_{GND} =0 V). FIG. 2 illustrates the same circuit. However, the labels included in FIG. 2 labels indicate the voltage levels for different circuit nodes in case of reverse polarity operation (supply voltage
$V_S\!\!=\!\!0$ V, ground potential $V_{G\!N\!D}\!\!=\!\!12\mathrm{V}).$ The exemplary circuit of FIGS. 1 and 2 include a switching device 1 that is supplied with a supply voltage V_S at a supply terminal and a corresponding reference potential, further 5 referred to as ground GND, at a ground terminal. The supply voltage may be, for example, provided by an automotive battery. The switching device includes a plurality of n-channel high-side DMOS transistors $T_1, T_2, \dots T_n$ wherein each one of the transistors associated with a respective output channel. Each transistor T_1, T_2, \dots, T_n has a load current path (e.g., the drain-source current path in case of a MOS transistor) that (internally) couples a respective output terminal $\mathrm{OUT}_1, \mathrm{OUT}_2, \ldots, \mathrm{OUT}_n$ to the supply terminal (potential V_S). That is, dependent on the switching state (on or off) of a 15 transistor T_1, T_2, \ldots, T_n a low-resistance current path is provided (via the transistor's load path) from the supply terminal to the output terminal $OUT_1, OUT_2, \dots, OUT_n$ associated with an output channel. Electric loads may be connected between the output terminals $OUT_1, OUT_2, \dots, OUT_n$ 20 and ground. The switching state of a transistor T_1, T_2, \dots, T_n is set in accordance with a respective control signal (e.g., a gate current or a gate voltage in case of a MOSFET) which is provided, for example, using a gate driver circuit (not shown), wherein a gate driver circuit generates the control signals in 25 accordance with input signals supplied to respective input pins $IN_1, IN_2, \dots IN_n$. One input signal may be provided for each output channel. A logic circuitry 18 may be employed for pre-processing the signals supplied to the input pins IN₁, $IN_2, \dots IN_n$. Typically the logic circuitry generates the control 30 signals supplied to the gate drivers dependent on the signals supplied to the input pins IN_1 , IN_2 , ... IN_n . Each transistor T_1, T_2, \ldots, T_n has a reverse diode connected parallel to the transistor's load current path. Usual MOS transistors have an intrinsic reverse diode which always exists 35 due to the internal set-up of the transistor. Other transistors, which do not have an intrinsic reverse diode, may have an external reverse diode to allow free-wheeling when switching inductive loads. In order to provide a reverse polarity protection of the 40 internal circuitry of the switching device 1 it is known to connect a diode, e.g., a Schottky diode, between the ground terminal of the switching device and the actual ground potential provide by the power supply (e.g., the automotive battery). However, this diode can be replaced by a more sophisticated circuit as will be described later (see also FIG. 9). The labels indicating the voltage levels present at various circuit nodes refer to voltage levels during normal operation in FIG. 1 and to voltage levels during reverse polarity operation in FIG. 2. During normal operation the ground terminal 50 has a voltage level of 0 V, whereas the supply terminal has a positive voltage level of, e.g., V_s =12 V in case of an automotive battery. When an output transistor T_1, T_2, \ldots, T_n is active, the on resistance is low and the voltage drop across the transistor's load path comparably (as compared to the supply 55 voltage) low. In the present example a voltage drop of 100 mV across the output transistors T_1, T_2, \ldots, T_n is assumed so that the voltage at the output terminals $OUT_1, OUT_2, \ldots, OUT_n$ is 11.9 V. During reverse polarity operation (see FIG. 2) the supply 60 voltage of 12 V is applied reversely to the switching device 1. That is, the ground terminal is at 12 V and the supply terminal is at a voltage level of 0 V. As a consequence the reverse diodes D_{R1} , D_{R2} , . . . , D_{Rn} become forward bias and thus conductive. The voltage drop across each diode is typically at 65 least 0.7 V (as compared to 0.1 V in the prior case of normal operation) and thus the power losses are at least a factor seven 4 higher than in the case of normal operation. It goes without saying that those high power losses may lead to a thermal destruction of the switching device 1. As a consequence, reverse polarity protection circuitry is required, one example of which is described below with reference to FIGS. 3 and 4. FIG. 3 illustrates one of the power semiconductor switches included in the switching device 1 shown in FIG. 1. In the present example the power semiconductor switch is implemented as high-side n-channel DMOS transistor T_1 , which has an intrinsic reverse diode $D_{\mathcal{R}1}$ coupled parallel to the drain-source current path of the transistor T_1 . As the power transistor T_1 is a high-side switch, the supply terminal that receives the supply voltage $V_{\mathcal{S}}$ is connected to the drain electrode of the transistor T_1 . The source electrode of the transistor T_1 is connected to the output terminal OUT_1 of the respective output channel. As the power transistor is a vertical n-channel MOS transistor, the supply terminal (and thus also the drain electrode of the power transistor) is electrically connected to the semiconductor substrate in which the power transistor is integrated. Therefore, the substrate has an electric potential $V_{\mathcal{S}}$ equal to the potential that is supplied to the respective supply terminal (e.g., $12\,\mathrm{V}$ during normal operation, $0\mathrm{V}$ during reverse polarity operation). The transistors M_{P1} and M_{N1} form a CMOS half-bridge (e.g., CMOS inverter) and can be regarded as part of the gate driver circuit GD (i.e., as gate driver output stage). The p-channel MOS transistor M_{P1} is connected between a floating supply voltage terminal CP, at which a floating supply voltage is applied with respect to the source electrode of the power transistor T_1 , and the gate electrode of the power transistor T_1 . The n-channel MOS transistor M_{N1} is connected between the gate electrode and (e.g., via a resistor R) the source electrode of the power transistor T₁. The floating supply voltage may be provided by a bootstrap supply circuit or any other kind of charge pump. Floating power supplies for gate driver circuits are known as such and therefore not further discussed here. In other words, the CMOS half-bridge formed by the transistors M_{P1} and M_{N1} is connected between the floating supply voltage terminal CP and a circuit node C which is electrically connected (via the resistor R) to the source electrode of the power transistor T_1 . The source potential of the power transistor T_1 provides the floating reference potential for the floating supply voltage. The inverter output is connected to the gate of the power transistor T_1 . The resistor R is implemented to provide an ESD protection for protecting the device against electrostatic discharges (short: ESD). Furthermore, the resistor R decouples the source electrode of the power transistor T_1 from the floating p-doped well in which the gate driver circuit GD is integrated. This decoupling can be advantageously used during reverse polarity (see below). During normal operation (i.e., when the battery or any other power supply is correctly connected to the supply terminal and provides a positive supply voltage V_S of, e.g., 12 V) the power transistor T₁ may be activated (switched on) and deactivated (switched off) either by supplying a positive gate current $i_G = i_{ON}$ to the gate electrode of the power transistor T_1 (thus charging the gate) or, respectively, by draining a negative gate current $i_G = i_{OFF}$ from the gate electrode (thus discharging the gate). For charging the gate the p-channel MOS transistor \mathbf{M}_{P1} is activated (e.g., by means of the logic circuitry 18 shown in FIG. 1) while the n-channel MOS transistor M_{N_1} is inactive (switched off). Conversely, for discharging the gate the n-channel MOS transistor M_{N1} is activated (e.g., by means of the logic circuitry 18 shown in FIG. 1) while the p-channel MOS transistor M_{P1} is inactive (switched off). It should be noted, that a more sophisticated gate driver circuit may be implemented, e.g., to provide a gate current profile to achieve a specific switching characteristic of the power transistor T_1 . As usual, the MOS transistor M_{N1} of the CMOS inverter has a parasitic npn-type bipolar junction transistor (BJT) Q_1 5 coupled in parallel, wherein the n-doped collector of the BJT Q_1 is formed by the drain of the MOS transistor M_{N1} , the base of the BJT Q_1 is formed by the p-doped body (bulk) of the MOS transistor M_{N1} , and the n-doped emitter of the of the BJT Q_1 is formed by the n-doped substrate, that is connected 10 to the supply voltage V_S as discussed above. The implementation of the integrated power transistor T_1 and the CMOS gate formed by transistors M_{N1} , M_{P1} is sketched in FIG. 5 which is a cross-sectional view through (a part of) the semiconductor body in which the switching device 1 is integrated. FIGS. 3 and 4 further illustrate circuit components which form a reverse polarity protection circuit for protecting the power transistors T_1 from the negative effects of reverse polarity as discussed above. A series circuit of an electronic switch SW_A and a diode D_A may be connected between the 20 ground terminal GND (ground potential V_{GND}) and a circuit node A that is also connected to the gate electrode of the power transistor T_1 and the drain electrode of the MOS transistor M_{N1} . The electronic switch SW_A is open during normal operation and closed during reverse polarity operation. When 25 closed the electronic switch SW_A provides a current path of a defined resistance R_A . One exemplary implementation of the switch SW_A is discussed later with respect to FIG. 6. The cathode
of the diode D_A is coupled with circuit node A whereas the anode of the diode is coupled to ground potential 30 (via the electronic switch SW_A). Thus, the diode D_A is forward biased during reverse polarity operation as, in this case, the ground terminal is supplied with a high positive supply voltage (e.g., $16 \, V$) while the supply terminal has an electric potential of $V_S = 0V$, and the source potential of the power 35 transistor T_1 is thus limited to $0.7 \, V$ due to the forward biased reverse diode D_{R1} of the power transistor T_1 . For the case of a reversed supply polarity, the series circuit of switch $SW_{\mathcal{A}}$ and diode $D_{\mathcal{A}}$ may pull the gate of the power transistor T_1 to voltage levels high enough to activate the 40 power transistor T_1 . In this case the power transistor T_1 provides a low resistance current path (drain-source current path) that by-passes the reverse diode $D_{\mathcal{R}1}$. As a consequence the voltage drop across the power transistor T_1 is about -100~mV (or even lower) whereas the voltage drop (drain-source voltage) would be at least -700~mV if the power transistor T_1 were not activated. The above-mentioned parasitic BJT Q₁ may, however, inhibit the activation of the power transistor T_1 in case of a reversed supply polarity. During reverse polarity operation an 50 activation (i.e., a forward-biasing of the base-emitter diode) of the BJT may occur and, as a result, the BJT Q₁ would become conductive and thus clamp the potential at circuit node A, which is supplied to the gate of the power transistor T_1 , to about 0 V (i.e., the substrate potential V_S during reverse 55 polarity). This clamping of the gate potential to about 0V would inhibit the activation of the power transistor T_1 and make the above-described series circuit of diode D_4 and switch SW₄ ineffective. So additionally to that series circuit of switch SW_A and diode D_A for activating the power transistor T₁ during reverse polarity operation, further circuit components are required that are able to prevent an activation of the parasitic BJT Q₁. For this purpose another electronic switch SW_C is used, which is configured to short-circuit the base-emitter diode of the parasitic BJT Q₁ and thus to inhibit 65 an activation of the BJT. However, the electronic switch SW_C should not be active during normal operation but rather dur6 ing reverse polarity operation only. Other circuitry than the switch SW_C may also appropriate to inhibit the activation of the BJT Q_1 . As such, the illustrated circuit has to be regarded as an example. In the example presented in FIGS. 3 and 4 the electronic switch SW_C is formed by one or more DMOS transistor cells (forming the DMOS transistor T_c). The drain electrodes of the transistor T_C and the power transistor T_1 are both connected to the supply terminal. This comes naturally when both transistors T_C , T_1 are integrated in the same manner in the same substrate. To activate (switch on) the transistor T_C (and thus the switch SW_C) another series circuit of a switch SW_B and a diode D_B is employed. The series circuit SW_B , D_B is connected between a circuit node B and the ground terminal GND. The circuit node B is connected to the gate electrode of the transistor T_C . During normal operation the switch SW_B is open whereas the switch SW_B is closed during reverse polarity operation. When closed the electronic switch SW_B provides a current path of a defined resistance R_B . One exemplary implementation of the switch SW_B is discussed later with respect to FIG. 6. While the switch SW_B is open (i.e., during normal operation) the transistor T_C is switched off, e.g., using the current source X_S . The current source X_S is coupled between the gate and the source electrode of the transistor T_C such that, during normal operation, the gatesource capacitance of the transistor TC is discharged and the transistor T_C (and thus the switch SW_C) is inactive (switched The function of the circuit of FIGS. 3 and 4 is summarized below and with reference to the exemplary voltage levels given in FIGS. 3 and 4 for normal operation and for a reversed supply polarity, respectively. The voltage levels included in the labels in FIG. 3 represent a state in which the voltage across the inductive load is clamped to a minimum of, e.g., -30 V. A negative voltage can be observed at the output terminal OUT_1 when the inductive load (represented by the inductor L_1 and the series resistance R_{L1}) is switched off. To limit the negative output voltage in magnitude, the gate of the power transistor T_1 (circuit node A) is coupled to the supply terminal via a series circuit of several diodes D_{41}, D_{42}, \dots D_{An} (two, e.g., zener, diodes coupled back-to-back may be sufficient, however) that limits the drain-gate voltage to a maximum, which is 39 V (12 V drain voltage, -27 V minimum gate voltage) in the present example. If the output voltage at the output terminal (and thus at the source electrode of the power transistor T_1) falls to 30 V, the gate voltage is clamped to the mentioned 27 V and thus the drain-source voltage is high enough to keep the transistor conductive thus allowing the energy stored in the inductor L_1 to dissipate in the power switch T_1 . During this "discharging" of the inductor L_1 the output voltage is also clamped to a minimum of, e.g., -30 V. It should be emphasized, however, that the voltage levels indicated in FIG. 3 are merely an illustrative example. The actual voltage levels depend on the actual implementation of the circuit, particularly on the maximum voltage across the diode "chain" $D_{A1}, D_{A2}, \dots, D_{An}$ As mentioned above, the switches SW_A , SW_B , and SW_C are inactive during normal operation (i.e., while the supply polarity is not reversed). Another diode chain D_{B1} , D_{B2} , . . . , D_{Bm} may be coupled between the circuit node B and the supply terminal (supply voltage V_S) to provide a clamping mechanism to the transistor T_C , which forms the switch SW_C . The purpose and function of the diode chain D_{B1} , D_{B2} , . . . , D_{Bm} is the same as the of the diode chain D_{A1} , D_{A2} , . . . , D_{An} . FIG. 4 illustrates the same circuit as FIG. 3. However, the labels indicating the voltage levels refer to a situation with reversed supply polarity. When the supply polarity is reversed, the supply terminal is at $V_S = 0 \ V$ and the ground terminal GND is supplied with the positive supply voltage which is 16 V in the present example. As mentioned above, the switches SW_A and SW_B are switched on during reverse polarity operation. The closed switch SW_B pulls the gate of 5 the transistor $\mathrm{T}_{\mathcal{C}}(\mathrm{i.e.},\mathrm{the\,circuit\,node\,B})$ to a voltage level that is high enough (e.g., 5V) to activate the transistor T_C . That is, the switch SW_C is switched on and thus an activation of the parasitic BJT Q1 is prevented. The output voltage at the output terminal OUT₁ is clamped to about 100 mV which is the voltage drop across the switch SW_C and thus the maximum base-emitter voltage provided to the BJT Q_1 is about 100 mV which is too low to activate the BJT. As an activation of the BJT Q₁ is not possible the closed switch SW₄ pulls the voltage at the circuit node A (gate of the power transistor T_1) to a level that is high enough (e.g., 5V) to activate the power transistor T₁, thus reducing the voltage drop across the power transistor T₁ to about 100 mV. It should be emphasized, however, that the voltage levels indicated in FIG. 4 are merely an illustrative example. The actual voltage levels depend on the 20 actual implementation of the circuit, particularly on the onresistance of the DMOS transistors T_1 and T_C . FIG. 5 illustrates the implementation of the power DMOS transistor T_1 as well as the CMOS gate T_{P1} , T_{N1} in a n-doped substrate. FIG. 5 illustrates a cross-section through the semi- 25 conductor body. The cross-section illustrates the power DMOS transistor T_1 (at least partly as the transistor T_1 is composed of a plurality of transistor cells) in the right side of the illustration and the CMOS half-bridge (transistors M_{P1} and M_{N1} , see FIG. 3) on the left side of the illustration. The 30 depicted doped zones are not true to scale. Moreover, only those components, which are relevant for the present discussion, are included in the illustration. Oxide layers, some metallization layers, strip lines, etc. have been omitted to allow to concentrate on the relevant parts. In the present example, an 35 epitaxial layer 10' is disposed (by way of epitaxial deposition) on the silicon substrate 10. The silicon substrate is n-doped, the epitaxial layer 10' is also made of an n-doped silicon, usually with a lower doping concentration (indicated by the superscript in "n-"). The resulting semiconductor body 40 including the epitaxial layer is often referred to as substrate. It should be noted, that dependent on the manufacturing technology used, the epitaxial layer is optional. The power MOS transistor T₁ is implemented as a vertical trench gate transistor. Generally, a vertical transistor is a transistor, in which the 45 load current (i.e., the drain-source current in the case of a MOSFET) is directed from a top surface (where the source electrode is located) of the semiconductor body in a vertical direction through the semiconductor body to a bottom surface (where the drain electrode is located) of the semiconductor 50 body. Transistor cells are formed (and separated by) trenches 46 extending from the top surface into the epitaxial layer 10' of the semiconductor body. The semiconductor portions between two neighbouring trenches 46 form the transistor cells. In each transistor cell a body zone 41 is formed, e.g., by 55
ion implantation, or diffusion of dopants. In the present example, the body zones 41 are p-doped and extend from the parallel to the top surface of the semiconductor body. Heavily n-doped source zones 44 and heavily p-doped body contact zones 45 are formed (e.g., by way of ion implantation and/or 60 diffusion). The source zones 44 and the body contact zones 45 are extend from the top surface of the semiconductor body into the epitaxial layer 10' such that they are (in a vertical direction) "enclosed" between the body zones 41 and the top surface of the semiconductor body. In a horizontal direction 65 the source zones 44 are confined by the trenches 46 and the body contact zones 45. 8 Gate electrodes 42 are formed within the trenches 46 adjacent to the source zones 44 and the body zones 41. Thus, an conductive n-type channel can be established from the source zones 55 through the corresponding body zones 41 to the epitaxial layer 10' (also referred to as drift zones). The drain of the power transistor cells is formed by the substrate 10. Source electrodes S (usually made of metal) are formed to contact the source zones 44 and the body contact zones 45. The source electrodes S are electrically connected to the output circuit node OUT_1 (see also FIG. 3). The gate electrodes 42 are electrically connected to circuit node A (see also FIG. 3) On the left side of the illustration of FIG. 5 one can see the implementation of the CMOS half-bridge (transistors M_{P1} and M_{N1} , see also FIG. 3). The NMOS transistor M_{N1} is integrated in a p-doped well 31 (short: p-well), whereas the PMOS transistor M_{P1} is integrated in an n-doped well 21 (short: n-well). Both, the n-well 21 and the p-well 31 are formed in the epitaxial layer by way of ion implantation and/or diffusion of dopants, and both are adjacent to each other and separated from the (remaining) epitaxial layer by a p-doped isolation zone 20 (short: p-iso zone), which is a so-called junction isolation zone wherein the isolation is provided by a reverse biased pn-junction between the p-iso zone 20 and the n-doped substrate 10. That is, the n-well 21 and the p-well 31 are enclosed by the p-iso zone 20 and the top surface of the semiconductor body. Within each well 21 and 31 a source zone 24, 34, a corresponding drain zone 23, 33, and a corresponding body contact zone 25, 35 is formed, e.g., by way of ion implantation and/or diffusion of dopants. The NMOS transistor T_{N1} is formed within the p-well 31 (also forming the transistor's body zone) by the source zone 34 (n-doped), the drain zone 33 (n-doped), and the gate electrode 32 arranged parallel to the surface of the semiconductor body between the source zone 34 and the drain zone 33. The PMOS transistor T_{P1} is formed within the n-well 21 (also forming the transistor's body zone) by the source zone 24 (p-doped), the drain zone 23 (p-doped), and the gate electrode 22 arranged parallel to the surface of the semiconductor body between the source zone 24 and the drain zone 23. The body contact zones 25 and 35 are of the same conduction type (p or n) as the respective well 21 and 31, respectively. The drain zones 23 and 33 are electrically connected to circuit node A and thus to the gate electrodes 42 of the power MOSFET T₁ (see also FIG. 3). The source zone 34 and the body contact zone 35 are short-circuited and both electrically connected to the source electrode S of the power MOSFET T₁ via the resistor R (see also FIG. 3). The source zone 24 and the body contact zone 25 are short-circuited and both electrically connected to the floating supply terminal CP (e.g., coupled to a charge pump) as already described with reference to FIGS. 3 and 4. The parasitic bipolar junction transistor (BJT) Q_1 discussed above with reference to FIGS. 3 and 4 is also sketched in FIG. 5. One can see in FIG. 5 that the emitter of the BJT Q_1 is formed by the n-doped epitaxial layer 10', its collector is formed by the n-doped drain zone 33 (of NMOS transistor M_{N1}), and its base is formed by the p-doped well 31 and the isolation zone 20. As already explained with reference to FIG. 3, the BJT Q_1 can electrically connect—when active—the trench gates 42 (i.e., circuit node A) with the substrate 10 and thus with its electrical potential. FIGS. **6** and **7** illustrate one exemplary implementation of the switch SW_A used in the circuit of FIG. **3**. The switch SW_B may be implemented in an identical manner. In accordance with the present example, the switch SW_A is implemented as a p-channel MOS transistor M_{PA} . The source of the transistor M_{PA} is coupled to the ground terminal GND whereas the drain terminal of the transistor M_{PA} is coupled to the circuit node A (via the diode D_A). The diode D_A blocks any current flowing through the intrinsic reverse diode of the transistor M_{PA} , when the transistor M_{PA} is blocking during normal operation. The gate of the a p-channel MOS transistor M_{PA} is coupled to the ground terminal GND via a resistor R_1 and also to the supply terminal (potential V_S) via a series circuit of a further diode D_3 and a resistor R_2 . The cathode of the diode D_3 is coupled to the supply terminal. Thus the resistors R_1 and R_2 form a voltage divider with a middle tap connected to the gate of the transistor M_{PA} . As during normal operation (see FIG. 6) the ground terminal is at 0 V and the supply terminal at a positive supply voltage (e.g., $16 \, \mathrm{V}$ in the present example) the diode $\mathrm{D_3}$ is 15 reverse biased. Thus, the supply voltage drops across the diode $\mathrm{D_3}$ whereas the voltage at the middle tap of the voltage divider is at 0 V. As a consequence, the transistor $\mathrm{M_{PA}}$ is inactive during normal operation, as the gate-source-voltage is zero. In the present example (and in accordance with the 20 example of FIG. 3) the voltage at the circuit node A is assumed to be $-27 \, \mathrm{V}$ and the voltage drop across the diode $\mathrm{D_A}$ about $0.7 \, \mathrm{V}$, and thus the diode $\mathrm{D_A}$ has to block about $-26.3 \, \mathrm{V}$. During reverse polarity operation (see FIG. 7) the ground terminal is supplied with the positive supply voltage, e.g., 16 25 V whereas the supply terminal is at 0 V. The diode D_3 is forward biased and the middle tap of the voltage divider R_1 , R_2 is pulled up to a voltage low enough (e.g., 14 V) to activate the transistor M_{PA} . In the present example (and in accordance with the example of FIG. 4) the voltage at the circuit node A 30 is assumed to be 5 V and the voltage drop across the diode D_A about 0.7 V, and thus the voltage drop across the switch SW_A is about 10 V (drain voltage 16 V, source voltage 5.7 V). FIG. 8 illustrates one exemplary implementation of the p-channel MOS transistor M_{AP} by means of a cross sectional 35 view of the semiconductor body. Accordingly, the MOS transistor M_{AP} may be implemented similar to the transistor M_{P1} of the CMOS gate mentioned above with regard to FIG. 5. However, the PMOS transistor M_{AP} has to be designed to withstand higher blocking voltages. Accordingly, the PMOS 40 transistor M_{AP} is formed in an n-doped well 11 (short: n-well), which is isolated from the surrounding semiconductor body (or epitaxial layer 10') by an p-doped isolation zone **20'** similar to the PMOS transistor M_{P1} illustrated in FIG. **5**. A p-doped source zone 14 and a p-doped drain zone 13 as well as an n-doped body contact zone 15 are formed in the n-well 11 by way of ion implantation and/or diffusion of dopants. A gate electrode 12 is arranged parallel to the top surface of the semiconductor body between the source and the drain zone 14, 13. The source zone 14 and the body contact zone 15 are 50 electrically short circuited. In order to avoid an activation of any parasitic bipolar transistor, the electrical potential of the p-isolation zone 20' should be maintained at or close to 0 V regardless of the operation mode (normal operation or reverse polarity) of the circuit. This task may achieved by the circuit 55 depicted in FIG. 9. Besides the purpose described above (maintaining the potential of the p-isolation zone **20**' of the transistors M_{PA} and M_{PB} at or close to 0 V, see FIGS. **6** to **8**) the circuit of FIG. **9** can also replace the Schottky diode D_S depicted in FIG. **1**. The 60 circuit of FIG. **9** is connected between the ground terminal GND of the smart switch device **1** and the supply terminal SUP (i.e., the substrate **10**), which is provided with the supply potential V_S . Two MOS transistors M_{HV1} , M_{HV2} are connected in series between ground potential V_{GND} present at the ground terminal GND and the supply potential VS present at the substrate (see substrate **10** in FIG. **5**). Both transistors 10 ${\rm M}_{HV1}$, ${\rm M}_{HV2}$ are n-channel MOS transistors having a high blocking voltage. The common circuit node between the two MOS transistors is denoted as internal ground node ${\rm GND}_{INT}$ to which the p-isolation zones 20' (see FIG. 8) are electrically connected. The source electrodes of both transistors are electrically connected to the internal ground node ${\rm GND}_{INT}$ whereas the drain electrode of transistor ${\rm M}_{HV1}$ is electrically connected to the substrate (and thus to the supply voltage ${\rm V}_S$) and the drain electrode of the transistor ${\rm M}_{HV2}$ is electrically connected to the ground terminal GND. It should be noted that the transistor ${\rm M}_{HV1}$ as well as the zener diode ${\rm D}_Z$ coupled between the gate of the transistor ${\rm M}_{HV1}$ are used to provide an over-voltage protection and are thus optional for the purpose of reverse polarity protection. FIG. 9a illustrates exemplary voltages during normal operation (V_S =16V, V_{GND} =0V). In this mode of operation, the MOS
transistor M_{HV2} is activated as its gate is charged via the resistor R₃ that is connected between the substrate and the gate terminal of the MOS transistor M_{HV2} . That is, the supply potential V_S is coupled to the gate of the MOS transistor M_{HV2} via the resistor R_3 . As a result, the circuit node GND_{TNT} is almost short-circuited to the (external) ground terminal GND via the MOS transistor M_{HV2} and the potential at the circuit node GND_{INT} is approximately 0.1 Volts. The gate voltage of the MOS transistor M_{HV2} is limited (in the present example to 3 V) by the diode D_P , which is coupled between the circuit node GND_{INT} and the gate electrode of the MOS transistor M_{HV2} . In the present example, the diode D_P is a MOS diode which has a forward voltage of about 3 V. A series circuit of several PN-diodes or a reverse biased zener diode may, however, also be used. The labels included in FIG. 9a illustrate voltage labels in the case of a normal operation ($V_s=16V_s$) $V_{GND}=0V$). FIG. 9b illustrates exemplary voltages during reverse polarity (V_S =0V, V_{GND} =16V). In this mode of operation, the MOS transistor M_{HV2} is switched off as the gate is pulled down to 0V via the resistor R_3 . Further the potential present at the circuit node GND_{INT} is also pulled down by the resistor R_4 which is coupled between the substrate (V_S =0V in case of reverse polarity) and the circuit node GND_{INT} . Generally, the circuit of FIG. 9 provides an electric potential of approximately 0V to the p-isolation zone(s) 20' and thus an activation of a parasitic bipolar resistor is avoided regardless of whether the smart switch is operated with normal supply voltage or with reversed supply voltage. Although exemplary embodiments and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and the scope of the invention as defined by the appended claims. With the above range of variations and applications in mind, it should be understood that the present invention is not limited by the foregoing description, nor is it limited by the accompanying drawings. Instead, the present invention is limited only by the following claims and their legal equivalents. Spatially relative terms such as "under," "below," "lower," "over," "upper" and the like are used for ease of description to explain the positioning of one element relative to a second element. These terms are intended to encompass different orientations of the device in addition to different orientations than those depicted in the figures. Further, terms such as "first," "second" and the like, are also used to describe various elements, regions, sections, etc. and are also not intended to be limiting. Like terms refer to like elements throughout the description. As used herein, the terms "having," "containing," "including," "comprising" and the like are open ended terms that 11 indicate the presence of stated elements or features, but do not preclude additional elements or features. The articles "a," "an" and "the" are intended to include the plural as well as the singular, unless the context clearly indicates otherwise. ## What is claimed is: - 1. A semiconductor device comprising: - a semiconductor chip including a substrate; - a first supply terminal electrically coupled to the substrate to provide a first supply potential and a load current to the substrate; - a second supply terminal operably provided with a second supply potential; - a first vertical transistor integrated in the semiconductor chip and electrically coupled between the first supply terminal and an output terminal, the first vertical transistor configured to provide a current path for the load current to the output terminal in accordance with a control signal that is provided to a gate electrode of the first vertical transistor; - a control circuitry integrated in the semiconductor chip and coupled to the first vertical transistor and configured to generate the control signal to switch the first vertical transistor on and off, the control circuitry including a 25 reverse polarity protection circuit that comprises: - a first MOS transistor coupled in series with a first diode, the first MOS transistor and the first diode being coupled between the first and the second supply terminals; and - a first switching circuit coupled to the first MOS transistor and electrically connected between the first and the second supply terminals, the first switching circuit configured to activate the first MOS transistor when the second supply potential exceeds the first supply potential by more than a given threshold, wherein 35 - the control circuitry further comprises a gate driver output stage including an n-channel MOS transistor coupled between the gate electrode of the first vertical transistor and a first circuit node that is electrically connected to the output terminal via a resistor, and - the reverse polarity protection circuit further comprises a second vertical transistor integrated in the semiconductor chip and electrically coupled between the first supply terminal and the first circuit node, the second vertical transistor configured to establish, when activated, a current path between the first supply terminal and the first circuit node. - 2. The semiconductor device of claim 1, wherein the first vertical transistor is an n-channel high side transistor and the substrate is an n-doped substrate. - 3. The semiconductor device of claim 1, - wherein the reverse polarity protection circuit further comprises: - a second MOS transistor coupled in series with a second diode, the second MOS transistor and the second diode 55 being coupled between the first and the second supply terminals; and - a second switching circuit that is coupled to the second MOS transistor, and is electrically connected between the first and the second supply terminals, the second 60 switching circuit configured to activate the second MOS transistor when the second supply potential exceeds the first supply potential by more than the given threshold. - **4.** The semiconductor device of claim **3**, wherein the first diode is coupled to the gate electrode of the first vertical transistor, and wherein the second diode is coupled to the gate electrode of the second vertical transistor. 12 - **5**. The semiconductor device of claim **3**, wherein the n-channel MOS transistor included in the driver output stage is integrated in a p-doped well arranged in the substrate, the substrate being n-doped. - 6. The semiconductor device of claim 3, - wherein the first vertical transistor is an n-channel high side transistor and the substrate is an n-doped substrate composed of a plurality of transistor cells, and - wherein the second vertical transistor is an n-channel transistor composed of one or more transistor cells, the second vertical transistor having fewer transistor cells than the first vertical transistor. - 7. The semiconductor device of claim 6, - wherein the substrate is an n-doped silicon substrate including an n-doped well that extends into the substrate from a top surface of the substrate and that is enclosed by a p-doped isolation zone so that the p-doped isolation zone and the n-doped substrate form a junction isolation isolating the n-doped well from the substrate; and - wherein the first MOS transistor and/or the second MOS transistor is a p-channel MOS transistor that is integrated in the n-doped well. - 8. The semiconductor device of claim 6, - wherein the driver output stage further includes a p-channel MOS transistor coupled in series to the n-channel MOS transistor thus forming a CMOS half-bridge; - wherein the p-channel MOS transistor is coupled between the gate electrode of the first vertical transistor and a floating supply terminal; - wherein the p-channel MOS transistor included in the driver output stage is integrated in an n-doped well arranged in the substrate; and - wherein the n-doped well is isolated from the substrate by a p-doped isolation zone that forms a junction isolation. - 9. The semiconductor device of claim 8, further comprising a circuit coupled between the first supply terminal and the second supply terminal and configured to provide an electric potential to the p-doped isolation zone that is at least approximately equal to ground potential regardless of whether the first supply potential is higher than the second supply potential or vice versa. - 10. The semiconductor device of claim 8, further comprising - a further transistor coupled between the second supply terminal and an internal ground node this is electrically connected to the p-doped isolation zone so that the p-doped isolation zone and the internal ground node have substantially the same electric potential; - a further switching circuit coupled to the further transistor and to the first supply terminal and configured to activate the further transistor when the first supply potential exceeds the second supply potential, thus electrically connecting the internal ground node with the second supply terminal; and - a further circuit coupled between the first supply terminal and the internal ground node and configured to pull the electric potential of the internal ground node towards the potential present at the first supply terminal when the second supply potential exceeds the first supply potential. - 11. The semiconductor device of claim 10, - wherein the further transistor includes an intrinsic reverse diode, which is coupled parallel to a load current path of the further transistor, and - wherein the further switching circuit includes a further resistor coupled between a gate electrode of the further transistor and the first supply terminal, 15 such that a current conduction is possible, when the second supply potential exceeds the first supply potential, neither
through the further transistor nor through the intrinsic reverse diode. - 12. The semiconductor device of claim 10, wherein the 5 further circuit is a pull-down resistor. - 13. The semiconductor device of claim 6, wherein the first diode is coupled to the gate electrode of the first vertical transistor, and wherein the second diode is coupled to the gate electrode of the second vertical transistor. - **14**. The semiconductor device of claim **6**, wherein the n-channel MOS transistor included in the driver output stage is integrated in a p-doped well arranged in the substrate, the substrate being n-doped. * * * *